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Summary. Maniscalco et al. (2009) analyzed natality of individually marked Steller
sea lion females on the Chiswell Island rookery in the Gulf or Alaska. Their data
consisted of females identified via unique markings such as scares and fungal patches.
From this process MHP estimated average annual natality to be between 0.54 – 0.64.
Using a hierarchical model to fully account for survival, detection, and individual het-
erogeneity on the observed natality process we estimate a population average natality
to be 0.54 (95% CI: 0.46 – 0.63). Moreover, the model illustrates that there seems
to be a mixture of “quality” in individual natality. Our estimates differ due to the
fact that we allow for heterogeneous natality rates among individual females as well as
accounting for survival and detection probability.

1. Introduction

Maniscalco et al. (2009) (hereafter MHP) estimated natality rates for individually marked

Steller sea lions at Chiswell Island rookery in the Gulf of Alaska. Individuals were identified

via natural markings such as scars and fungal patches. MHP then attempted to identify

known individuals every breeding season (and opportunistically in between seasons) and

record evidence of natality.

used a rather ad hoc method of estimating natality while accounting for detectability of

individuals over time. Thus, their estimates do not adequately represent the full picture of

the natural natality process.

2. A Hierarchical Model for Estimating Natality Rate

2.1. General hierarchical models

A basic hierarchical model is composed of two main parts: (1) process model and (2) the data

model. The desired level of inference usually concerns the process model. This is usually
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a mathematical description of a process (P ) occurring in nature. The data model is added

to account for the types of data (D) that can be collected to measure the process. Usually

the data cannot directly measure P , so a hierarchy is build by conditioning the data model

on the unknown “true” state of the process to obtain the joint model [D, P ] = [D|P ] × [P ],

where “[x|y]” represents a probability model for x conditioned on y.

2.2. A process model for natality

The process of interest here is the natality rate of an individual female, say θit, where i

indexes an individual and t indexes year. For this basic analysis we assume that θit = θi

(i.e., natality is constant through time for an individual). The first process model fitted was

an individual Gaussian random effects model

θi =
1

1 + exp{−µθ − γθ,i}
, i = 1, . . . , n,

where µ is the average individual effect, γθ,i has a N(0, σ2

θ) distribution, and n is the number

of observed females.

In addition to heterogeneity in natality, it is also presumed that there will exist some

level of heterogeneity in annual survival, say φi, of individuals. Accounting for survival in

this analysis is crucial due to the fact that a female which is not seen after a certain time

period still has some probability of being alive. She may just not be visiting the rookery

before the end of the study. Therefore, we postulate a survival process similar to the natality

process,

φi =
1

1 + exp{−µφ − γφ,i}
, i = 1, . . . , n,

where φi is the annual survival rate of female i = 1, . . . , n, µφ is the average individual effect,

and γφ,i has a N(0, σ2

φ) distribution.

It is assumed that the survival process is independent of the natality process. Note, that

this does not imply that for an individual female that realizations of these processes are

independent. This assumption simply implies that an individual will have a high (or low)

natality rate independent of its rate of survival. Thus we have the joint natality and survival

model

[θ, φ|µθ, µφ, σθ, σφ] = [θ|µθ, σθ][φ|µφ, σφ].

This is the joint model of the natural processes underlying the data we will obtain.

2.3. The data model

Next, we will model the data obtained by MHP at Chiswell Is. MHP performed 2 analyses,

the first using all data for a female, beginning with the first year she was identified, the second
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beginning after the first observed birth. In the present analysis, we started the record for a

female the year following her first identification on Chiswell Is. during the breeding season.

Let fi be the first year a female is seen on Chiswell. My analysis uses data from year fi + 1

till the end of the study.

First we consider the “state” of the animal (i.e., alive or dead in the population of

interest), because, for obvious reasons, this will affect the probability that a female will give

birth. For female i, denote the state of the animal at time t by Sit which equals 1 if the

animal is known to be alive in breeding season t and 0 if the female is dead. Of course the

0s are unobservable. So, at some point the female may not be observed for the remainder of

the study. From this time on, Sit = “NA” (i.e., missing). Let Si = {Sit}
k
t=1

, where k is the

maximum year resights were conducted, be the recorded state of female i. An example is

Si = [0 1 1 1 NA NA].

In this example the female was first identified on t = 2, last seen on t = 4, its state is unknown

after this point. The corresponding capture-history (detection) of this female would be

Di = [0 1 1 1 0 0].

In addition to the capture-history, Di (which gives Si). MHP also noted whether or not the

female in question gave birth in year t. This gives another vector of measurements Bi. For

the example female, say,

Bi = [0 1 1 1 NA NA].

Note, that it is possible to measure birth without detecting the female at Chiswell during

the breeding season. A female may be detected just after the breeding season without a pup.

A model for these data conditioned on the individual natality rates and survival rates was

constricted in a hierarchical fashion as well. First we condition on the state of the animal.

An animal must be alive to give birth, therefore, we considered the Bernoulli model

[Bit|Sit] ∼ (θiSit)
Bit(1 − θiSit)

1−Bit i = 1, . . . , n; t = fi + 1, . . . , k.

If Sit = 0, then natality rate = 0. The capture-history data was conditioned on Sit and Bit

because a female has to be alive to be seen and has a higher chance of being seen if she is

giving birth (more likely to be at Chiswell, hence detected). So, we consider the detection

model

[Dit|Sit, Bit] ∼ (δitSit)
Dit(1 − δitSit)

1−Dit i = 1, . . . , n; t = fi + 1, . . . , k,

where δit = δ0 if Bit = 0, else, δit = δ1. Finally, we get to the last piece, a model for the

state, Sit. The female must be alive at time t− 1 to survive to time t, therefore, we consider
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the Bernoulli model

[Sit|Si,t−1] ∼ (φiSi,t−1)
Sit(1 − θiSi,t−1)

1−Sit i = 1, . . . , n; t = fi + 1, . . . , k,

where Si,fi
= 1 by definition. Putting the three parts together we obtain the data model

[Dit, Bit, Sit] ∼ [Dit|Bit, Sit, δit] [Bit|Sit, θi] [Sit|Si,t−1, φi] t = fi + 1, . . . , k,

for each female i = 1, . . . , n.

3. Parameter Estimation

First, an examination of the population of inference. In the analysis performed by MHP,

they concluded that their results could be applied to a large area (if not the whole) Gulf of

Alaska population f Steller sea lions. I do not believe that these data can be extended beyond

those females that had some probability of breeding at Chiswell Island over the course of

study. This model depends on the fact that there is positive probability of a female returning

to breed on Chiswell Island. If she “dies” (actually dies or emigrates) the effect has to be

the same on natality. She contributes no new pups to the Chiswell population. There is

no information for estimating these quantities for animals that do not breed at sometime at

Chiswell Island.

For a complex hierarchical model such as this estimation can be tricky and there are

many potential parameters and derived parameters (functions of parameters) that could be

of interest. The most straightforward method to handle both of these issues is Bayesian

inference via MCMC (Markov chain Monte Carlo). For this data I used JAGS (v. 1.0.3) to

accomplish the sampling. I refrain from giving a description of MCMC here as it is a relatively

ubiquitous method. The MCMC algorithm provides a sample from the posterior distribution

of the parameters given the data. Essentially, the MCMC inverts the hierarchical model so

we can examine the distribution of the parameters given the data we actually observed. This

is often termed “Bayesian learning.”

3.1. Prior distributions

In order to use Bayes methods prior distributions must be specified for the parameters to

obtain a complete probability model. Table 1 gives the priors were used for this analysis.

Table 1

Prior distributions used in Bayesian analysis of Chiswell Is. natality data.
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Parameter Prior Distribution

µθ N(0, 1.582)

µφ N(0, 1.582)

σθ half tdf=5

σφ half tdf=5

δ0 Uniform(0,1)

δ1 Uniform(0,1)

3.2. Derived parameters

In addition to the parameters given in Table 1, there are other parameters which might be of

interest. Two of these which we consider are the population average natality rate θ̄ = E[θi].

For the hierarchical model proposed,

θ̄ =

∫
(2π)−1/2 exp{u2}

1 + exp{−µθ − σθu}
du.

This is the average natality rate of all females from the Chiswell breeding population. Also,

the median natality rate, θ̃ = 1/(1 + exp{−µθ}) might be of interest. We can similarly

calculate φ̄ and φ̃. Although, our primary interest is natality, survival is more of a nuisance

parameter. The derived parameters can be calculated for every iteration in the MCMC

routine which provided a sample from the posterior distribution of the derived parameters.

4. Results and Further Modeling

4.1. Results of proposed model

Table 2 gives the posterior mean, standard deviation, and 95% credible intervals for the

parameters and derived parameters of interest.

Table 2

Bayesian inference for parameters and derived parameters of interest.

Parameter Mean SD 95% CI

θ̄ 0.53 0.07 (0.44, 0.61)

φ̃ 0.87 0.03 (0.81, 0.93)

σθ 1.91 0.41 (1.16, 2.75)

σφ 0.65 0.46 (0.00, 1.50)

δ0 0.20 0.04 (0.12, 0.28)

δ1 0.96 0.02 (0.93, 0.99)
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4.2. Further investigation

A rather interesting outcome results when the distribution of the estimated individual na-

tality, θ̃i, is examined (Figure 2). Upon examination, one can see that there seems to be a

bi-modal distribution on natality rates. There are some reliable producers and some poor

producers.
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Figure 1 Histogram of estimated individual natality, θi, for each of the observed

females.

To further investigate I consider the following model for a mixture of natality rates θi = θ1

with probablity pQ and θ0 with probability 1 − pQ. Using the mixture model for individual

natality gives the following estimates.

Table 3

Bayesian inference for some parameters and derived

parameters from the mixture model.

Parameter Mean SD 95% CI

θ̄ 0.54 0.04 (0.46, 0.63)

θ0 0.23 0.08 (0.08, 0.40)

θ1 0.80 0.05 (0.69, 0.90)

φ̃ 0.86 0.03 (0.81, 0.93)

pQ 0.55 0.10 (0.35, 0.75)

δ0 0.21 0.04 (0.14, 0.30)

δ1 0.96 0.02 (0.93, 0.99)
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The mean natality θ̄ is nearly identical, but this model gives some extra information.

About 55% of the females could be considered quality producers at a rate of 0.8, while

the other 45% are poor producers at a rate of about 0.23. There is considerable uncer-

tainty,however, in the mixture (95% CI: 0.35 – 0.75). The question arises as to which model

is better. The Gaussian random effects model has an average posterior log-likelihood of -433

and the mixture model has an average likelihood of -450. Therefore, on fit alone, the random

effects model is better. If one penalizes based on model complexity, however, the tables are

reversed. The estimated “effective” number of parameters in the random effects model is

pD = 1191 while pD = 1116 for the mixture model. The DIC (similar to AIC; Akaike’s

Information Criterion) values for the random effects and mixture models respectively are

2058 and 2017. So, after model complexity corrections, the mixture model is judged to be

the most parsimonious.
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